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Abstract Given r real functions F1(x), . . . , Fr (x) and an integer p between 1 and r ,
the Low Order-Value Optimization problem (LOVO) consists of minimizing the sum of the
functions that take the p smaller values. If (y1, . . . , yr ) is a vector of data and T (x, ti ) is
the predicted value of the observation i with the parameters x ∈ IRn , it is natural to define
Fi (x) = (T (x, ti )− yi )

2 (the quadratic error in observation i under the parameters x). When
p = r this LOVO problem coincides with the classical nonlinear least-squares problem.
However, the interesting situation is when p is smaller than r . In that case, the solution
of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the
LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models.
When p � r the LOVO problem may be used to find hidden structures in data sets. One of
the most successful applications includes the Protein Alignment problem. Fully documented
algorithms for this application are available at www.ime.unicamp.br/~martinez/lovoalign.
In this paper optimality conditions are discussed, algorithms for solving the LOVO problem
are introduced and convergence theorems are proved. Finally, numerical experiments are
presented.
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1 Introduction

Given r functions F1, . . . , Fr defined in a domain � ⊂ IRn and an integer p ∈ {1, . . . , r},
we define the Low Order-Value function Sp : �→ IR by

Sp(x) =
p∑

j=1

Fi j (x)(x)

for all x ∈ �, where {i1(x), . . . , ir (x)} = {1, . . . , r} and

Fi1(x)(x) ≤ Fi2(x)(x) ≤ · · · ≤ Fi p(x)(x) ≤ · · · ≤ Fir (x)(x).

If the functions Fi are continuous, the function Sp is continuous as well, since it is a sum
of continuous functions [1,2]. However, even if all the functions Fi are differentiable, the
function Sp is, generally, nonsmooth. We define the Low Order-Value Optimization (LOVO)
problem in the following way:

Minimize Sp(x) subject to x ∈ �. (1)

In [1], the Order-Value Optimization problem (OVO) was introduced as the minimization
of the Order-Value function Fi p(x)(x) subject to x ∈ �. In [2], a nonlinear programming
reformulation was given for OVO and it was proved that, without the necessity of constraint
qualifications, local solutions of the reformulation are KKT points. The main applications of
OVO are in risk evaluation and robust estimation [18]. When Fi (x) represents the predicted
loss under the scenario i and the decision x , the OVO function Fi p(x) corresponds, essentially,
to the classical Value-at-Risk (VaR) [19] measurement with a confidence level (p/r) [6]. The
Conditional Value-at-Risk (CVaR) measurement with confidence level (r− p)/r corresponds
to the High Order-Value function S p(x) =∑r

j=r−p+1 Fi j (x)(x). In this case p is generally
small. A more general OVO formulation was presented in [25].

Let us define m = r !/[p!(r − p)!]. Clearly, the set {1, . . . , r} contains exactly m different
subsets C1, . . . , Cm with cardinality p. For all i = 1, . . . , m, x ∈ �, we define:

fi (x) =
∑

j∈Ci

Fj (x) (2)

and

fmin(x) = min{ f1(x), . . . , fm(x)}.
It is easy to see that fmin(x) = Sp(x) for all x ∈ � and, thus, the LOVO problem is:

Minimize fmin(x) subject to x ∈ �. (3)

Of course, the problem (3) is, at the same time, a particular case of (1), which corresponds
to take p = 1 and Fi (x) = fi (x), i = 1, . . . , r .

The characterization (3) of the LOVO problem will be used throughout this paper for
theoretical purposes and for some relevant applications. However, it should be observed that,
for computing fmin in the case (2) it is not necessary to compute all the functions fi .

The High Order-Value function (that corresponds to CVaR) is S p(x) = fmax(x), where
fmax(x) = max{ f1(x), . . . , fm(x)}. So, if the functions fi are convex, the problem (HOVO)
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of minimizing CVaR is a convex (minimax) problem and, if the fi ’s are affine functions, this
problem is reduced to Linear Programming [32].

The OVO problem [minimizing Fi p(x)(x)] may be applied to robust estimation of param-
eters because it generalizes the classical Minimax regression which, as it is well known, is
very sensitive to the presence of outliers. However, LOVO is more adequate for robust esti-
mation purposes, with the proper definitions of Fi (x). If y1, . . . , yr ∈ IR are observations
of a given phenomenon which, theoretically, corresponds to the physical law y = T (x, t),
we may define Fi (x) as the quadratic error at the i th observation (Fi (x) = (T (x, ti )− yi )

2).
The least-squares estimation of the parameters x comes from solving

Minimize
r∑

i=1

Fi (x) subject to x ∈ �.

If we estimate that approximately r − p observations come from (probably systematic)
observation errors, it is natural to estimate the parameters by means of solving the LOVO
problem

Minimize Sp(x) subject to x ∈ �.

Therefore, this LOVO problem is a generalization of the nonlinear least-squares problem
which is able to eliminate the influence of outliers.

Unlike OVO and HOVO, the LOVO problem is not applicable to risk evaluation. The
reason is that, if we define Fi (x) as the predicted loss under the decision x , the LOVO func-
tion discards the larger losses (as OVO and VaR) but does not discard the smaller ones. So,
the decisions under LOVO would be always unreasonably optimistic and risky.

On the other hand, in the case that p � r , the LOVO problem is a tool for finding Hidden
Patterns in situations where a lot of wrong observations are mixed with a small number of
correct data [5].

LOVO is a global nonsmooth optimization problem. In this paper, it will be shown that,
in spite of nonsmoothness, essentially smooth methods may be applied to its resolution pre-
serving convergence to reasonable stationary points. The main difficulty for solving LOVO
is the fact that the problem possesses many local minimizers. Therefore, in most applica-
tions, global optimization tools are necessary in order to obtain suitable initial points. In
[5] a space-filling curve method was suggested for obtaining initial approximations when
the original OVO is applied to Hidden Pattern problems. Specific problems need particular
heuristics for finding initial points. A particular heuristic for Protein Alignment is described
in [26].

This paper is organized as follows. In Sect. 2 we define two types of optimality conditions
for the LOVO problem. In Sect. 3 we define an algorithm for unconstrained LOVO problems,
that converges to weakly critical points. In Sect. 4 we introduce a method that converges to
strongly critical points. In Sect. 5 we introduce an algorithm for constrained LOVO prob-
lems. Hidden Pattern and Protein Alignment problems are discussed in Sect. 6. Numerical
examples are given in Sect. 7 and conclusions in Sect. 8.

Notation.

• The symbol ‖ · ‖ will denote the Euclidean norm of vectors and matrices, although often
it may be replaced by an arbitrary norm.

• B(x∗, ε) = {x ∈ IRn | ‖x − x∗‖ ≤ ε}.
• We denote IN = {0, 1, 2, . . .}.
• We denote IR+ = {t ∈ IR | t ≥ 0} and IR++ = {t ∈ IR | t > 0}.
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• Given K = {k0, k1, k2, . . .} such that k j < k j+1 and k j ∈ IN for all j ∈ IN , we denote

lim
k∈K

zk = lim
j→∞ zk j .

• If B ∈ IRn×n , B > 0 means that B is positive definite.
• [v]i denotes the i th component of the vector i . If there is no place for confusion, we also

denote vi = [v]i .
• If v ∈ IRn , we denote v+ = (max{0, v1}, . . . , max{0, vn})T .

2 Optimality conditions

In this section we use formulation (3). For all x ∈ � we define

Imin(x) = {i ∈ {1, . . . , m} | fi (x) = fmin(x)}.
In Lemma 2.1, we prove that a global minimizer x∗ of (3) is, necessarily, a global mini-

mizer of fi (x) for all i ∈ Imin(x∗). In Theorem 2.1 we show that the same property holds for
local minimizers.

Lemma 2.1 Let A ⊂ �, x∗ ∈ A. If the point x∗ is a global minimizer of fmin(x) subject
to x ∈ A, then x∗ is a global minimizer of fi (x) subject to x ∈ A for all i ∈ Imin(x∗). In
particular (taking A = �), if x∗ is a global minimizer of (3) then x∗ is a global minimizer of
fi (x) for all i ∈ Imin(x∗)

Proof Assume that, for some i ∈ Imin(x∗), x∗ is not a global minimizer of fi (x) subject to
x ∈ A. Then, there exists y ∈ A such that fi (y) < fi (x∗). So, by the definitions of fmin and
Imin(x∗),

fmin(y) ≤ fi (y) < fi (x∗) = fmin(x∗).

Therefore, x∗ is not a global minimizer of fmin(x) subject to x ∈ A. 
�

Theorem 2.1 If x∗ ∈ � is a local minimizer of (3) then, for all i ∈ Imin(x∗), x∗ is a local
minimizer of fi (x) subject to x ∈ �.

Proof Let ε > 0 such that x∗ is a global minimizer of fmin(x) subject to x ∈ A, where

A = {x ∈ � | ‖x − x∗‖ ≤ ε}.
By Lemma 1 we obtain that x∗ is a global minimizer of fi (x) subject to x ∈ A for all
i ∈ Imin(x∗). Therefore, x∗ is local minimizer of fi (x) subject to x ∈ � for all i ∈ Imin(x∗).


�

Remark The reciprocal of Lemma 2.1 is not true, even if the functions are continuous. Take
A = � = IR, f1(x) = (x − 1)2, f2(x) = x . Although x∗ = 1 is a global minimizer of fi (x)

for all i ∈ Imin(x∗) = {1}, this point is not a global minimizer of fmin. However, as we will
see below, the reciprocal of Theorem 2.1 is true if the functions fi are continuous.

Proposition 2.1 Assume that x∗ is a local minimizer of fi for all i ∈ Imin(x∗) and that fi is
continuous at x∗ for all i /∈ Imin(x∗). Then x∗ is a local minimizer of (3).
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Proof Let ε > 0 be such that fi (x∗) > fmin(x∗) + ε for all i /∈ Imin(x∗). Since fi is
continuous for all i /∈ Imin(x∗), there exists δ1 > 0 such that

fi (x) > fmin(x∗) for all i /∈ Imin(x∗) (4)

whenever ‖x − x∗‖ ≤ δ1.
By the hypothesis, there exists δ2 > 0 such that for all i ∈ Imin(x∗),

fi (x) ≥ fi (x∗) = fmin(x∗) (5)

whenever ‖x − x∗‖ ≤ δ2.
Define δ = min{δ1, δ2}. By (4) and (5), we have that, for all x ∈ � such that ‖x−x∗‖ ≤ δ,

and for all i = 1, . . . , m,

fi (x) ≥ fmin(x∗).

Therefore,

fmin(x) ≥ fmin(x∗)

for all x ∈ � such that ‖x − x∗‖ ≤ δ. 
�

Let � be differentiable on an open set that contains � and consider the nonlinear pro-
gramming problem

Minimize �(x) subject to x ∈ �. (6)

Necessary Optimality Conditions (NOC) are conditions that must be satisfied by local
minimizers of (6). For example, if � = IRn , the requirement “∇�(x) = 0” is a NOC. In
constrained Optimization, Necessary Optimality Conditions usually take the form: If a con-
straint qualification is satisfied at x∗, then the KKT conditions hold (see, for example [12]).
Constraint qualifications only involve properties of � whereas the KKT conditions involve
the gradient of f and the gradients of the constraints.

Theorem 2.1 allows us to prove the following corollary.

Corollary 2.1 Let x∗ ∈ � be a local minimizer of the problem (3), where all the functions
fi are differentiable in an open set that contains �. Then, for all i ∈ Imin(x∗), x∗ satisfies
the necessary optimality conditions associated with the problem

Minimize fi (x) subject to x ∈ �. (7)

Proof By Theorem 2.1, x∗ is a local minimizer of fi for all i ∈ Imin(x∗). Therefore, x∗
satisfies the necessary optimality conditions associated with this problem. 
�

Corollary 2.1 motivates the following definitions. Given a NOC for nonlinear program-
ming, we say that x∗ ∈ � is strongly critical if, for all i ∈ Imin(x∗), x∗ satisfies NOC,
associated with the problem (7).

We say that x∗ ∈ � is weakly critical if there exists i ∈ Imin(x∗) such that x∗ satisfies
NOC, associated with (7).

3 Unconstrained LOVO algorithm with convergence to weakly critical points

Optimization algorithms for solving nonlinear programming problems (6) are iterative. At
each iteration, the functional values, the gradients and, perhaps, the second derivatives of the

123



6 J Glob Optim (2009) 43:1–22

objective function and the constraints are generally required. Users of computer codes that
implement nonlinear programming algorithms must provide subroutines that evaluate these
quantities.

In the presence of the problems (1) or (3) one is tempted to use any well established
optimization method for smooth problems. Each time the (perhaps non-existent) ∇ fmin(x)

is required by the algorithm, one may choose i ∈ Imin(x) and “define”

∇ fmin(x)← ∇ fi (x). (8)

(We may proceed in a similar way if the algorithm also requires Hessians).
The question that we address in this section is: what happens if we proceed in that way?

As is well-known, to use such a strategy in many nonsmooth problems may be catastrophic.
However, we will show here that, in the case of (1–3), the consequences are less severe.
Essentially, we will show that convergence to weakly critical points necessarily occurs. It is
easy to see that weakly critical points are Clarke-stationary points [10,15] of the problem of
minimizing fmin (see [16, Sect. 2.5.1]).

Algorithm U1, defined below, applies to the unconstrained minimization (� = IRn) of
fmin(x). We assume that the functions fi are continuously differentiable for all x ∈ IRn . This
algorithm may be interpreted as a straightforward application of a smooth unconstrained min-
imization method to the unconstrained LOVO problem with the “wrong evaluation” (8).

Algorithm U1 Let θ ∈ (0, 1), α ∈ (0, 1), M > 1, β > 0, tone > 0 be algorithmic param-
eters. Let x0 ∈ IRn be the initial approximation. Given xk ∈ IRn , the steps for computing
xk+1 are:

Step 1 Choose ν(k) ∈ Imin(xk). If ‖∇ fν(k)(xk)‖ = 0, terminate.
Step 2 Compute dk ∈ IRn such that ∇ fν(k)(xk)

T dk ≤ −θ‖dk‖‖∇ fν(k)(xk)‖ and ‖dk‖ ≥
β‖∇ fν(k)(xk)‖.
Step 3 Compute tk > 0, xk+1 ∈ IRn , such that

fmin(xk+1) ≤ fmin(xk)+ αtk∇ fν(k)(xk)
T dk (9)

and

[tk ≥ tone] or
[

fmin(xk+t̄kdk)> fmin(xk)+αt̄k∇ fν(k)(xk)
T dk for some t̄k ≤ Mtk

]
.

(10)

The line-search strategy (9, 10) admits different implementations. The most straightfor-
ward one is backtracking. In this case, tk is chosen as the first number of the sequence
{1, 2−1, 2−2, . . .} that satisfies (9) and xk+1 = xk + tkdk . In this case tone = 1 and M = 2.
However, the choice based on (9, 10) admits more sophisticated and efficient line-search
procedures (see, for example, [13]).

Recall that, in the unconstrained LOVO problem, a weakly critical point is a point where
∇ fi (x) = 0 for some i ∈ Imin(x). In the following theorems we prove that the algorithm
stops at xk only if xk is weakly critical and that limit points of sequences generated by Algo-
rithm U1 are weakly critical. Theorems 3.1 and 3.2 may be proved using similar techniques
to the ones used in the unconstrained minimization algorithms presented in [9] and [26].
Complete proofs may be found in the expanded report [3].

Theorem 3.1 Algorithm U1 is well-defined and terminates at xk only if xk is weakly critical.
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Theorem 3.2 If x∗ is a limit point of a sequence generated by Algorithm U1 then x∗ is weakly
critical. Moreover, if limk∈K xk = x∗ and the same i = ν(k) ∈ Imin(xk) is chosen at Step 1
of the algorithm for infinitely many indices k ∈ K , then i ∈ Imin(x∗) and ∇ fi (x∗) = 0.
Finally, limk∈K ‖∇ fν(k)(xk)‖ = 0.

In [3] we addressed the local convergence of Algorithm U1. The choice of xk+1 in this
algorithm imposes that fmin(xk+1) ≤ fmin(xk) + αtk∇ fν(k)(xk)

T dk . This property is obvi-
ously satisfied if xk+1 = xk+tkdk but, for enhancing the probability of convergence to global
minimizers, other accelerated definitions for xk+1 are possible and, possibly, desirable. For
local convergence, however, the distance between xk+1 and xk must be small if xk is close to
being critical. Using quasi-Newton choices of the search direction the convergence is shown
to be superlinear and using Newtonian choices the convergence is quadratic [3].

4 Unconstrained LOVO algorithm with convergence to strongly critical points

In Sect. 3 we introduced Algorithm U1 which, briefly speaking, converges to weakly critical
points. In principle, Algorithm U1 may converge to points that are not strongly critical. For
example, consider the problem defined by f1(x) = x , f2(x) = x2, m = 2. For all x ∈ (0, 1)

we have that fmin(x) = x2. Therefore, it is easy to define a sequence xk ∈ (0, 1) generated
by Algorithm U1 and converging to 0. Of course, 0 is a weakly critical point, but it is not
strongly critical. The objective of this section is to introduce and analyze an unconstrained
algorithm that converges to strongly critical points. The idea is to work, at each iteration,
with a set of search directions corresponding to the indices such that f j (xk) = fmin(xk). In
this way, essentially, the new point will exhibit sufficient descent with respect to all these
directions and, in the limit, this property will guarantee strong criticality.

Algorithm U2 Let θ ∈ (0, 1), α ∈ (0, 1), M > 1, β > 0, tone > 0, ε > 0, δ > 0 be
algorithmic parameters. Let x0 ∈ IRn be the initial approximation. Given xk ∈ IRn , the steps
for computing xk+1 are:

Step 1 If ‖∇ fi (xk)‖ = 0 for all i ∈ Imin(xk), terminate the execution of the algorithm.
If ‖∇ fi (xk)‖ > δ for all i ∈ Imin(xk), choose i ∈ Imin(xk) and define Jk = {i}. Otherwise,
define

Jk = { j ∈ {1, . . . , m} | f j (xk) ≤ fmin(xk)+ ε and ∇ f j (xk) �= 0}.

Step 2 For all i ∈ Jk , compute di
k ∈ IRn such that

∇ fi (xk)
T di

k ≤ −θ‖di
k‖‖∇ fi (xk)‖ and ‖di

k‖ ≥ β‖∇ fi (xk)‖. (11)

Step 3 For all i ∈ Jk , compute t i
k > 0 such that

fi (xk + t i
kdi

k) ≤ fi (xk)+ αt i
k∇ fi (xk)

T di
k (12)

and
[
t i
k ≥ tone

]
or

[
fi (xk+t̄kdi

k)> fi (xk)+αt̄ i
k∇ fi (xk)

T di
k for some t̄ i

k ≤ Mti
k

]
.

(13)
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Step 4 Compute xk+1 ∈ IRn such that

fmin(xk+1) ≤ min
i∈Jk
{ fi (xk + t i

kdi
k)}. (14)

In Algorithm U2, if ‖∇ fi (xk)‖ > δ for all i ∈ Imin(xk) the iteration is identical to the one
of Algorithm U1. If, for some i ∈ Imin(xk) the gradient norm is smaller than δ we compute
descent directions for all the functions fi such that fi (xk) = fmin(xk) (with precision ε).
Then, we perform line searches along all these directions and we finish taking xk+1 such that
this point is at least as good as all the points obtained in the line searches. The most obvious
way to choose xk+1 is to set xk+1 = xk + t j

k d j
k , where j ∈ Jk and

f j (xk + t j
k d j

k ) ≤ fi (xk + t i
kdi

k) ∀ i ∈ Jk .

However, the choice (14) allows one to use extrapolation steps to enhance the chance of
convergence to global minimizers.

Below we show that the algorithm is well defined and can stop only at strongly critical
points.

Theorem 4.1 Algorithm U2 is well-defined and terminates at xk if, and only if, xk is strongly
critical. Moreover, if the algorithm does not terminate at xk ,

fmin(xk+1) < fmin(xk) (15)

for all k = 0, 1, 2, . . ..

Proof If xk is strongly critical, Step 1 guarantees that the algorithm terminates at xk .
Let us show now that, if xk is not strongly critical, the iteration that defines Algorithm U2

can be completed in finite time and that xk+1 satisfies (15).
If xk is not strongly critical, there exists i ∈ Imin(xk) such that ‖∇ fi (xk)‖ �= 0. Therefore,

the set Jk is nonempty and, by construction, for all i ∈ Jk , ∇ fi (xk) �= 0. Therefore, as in the
proof of Theorem 3.1, for all i ∈ Jk and t small enough, the sufficient descent condition

fi (xk + tdi
k) ≤ fi (xk)+ αt∇ fi (xk)

T di
k

is verified. Therefore, choosing t i
k as the first number in the sequence {tone, tone/M, tone/M2,

. . .} that satisfies (12), the conditions (12) and (13) are satisfied. So, the algorithm is well
defined.

Now, let i ∈ Imin(xk) be such that ∇ fi (xk) �= 0. Since i ∈ Jk we have that:

fi (xk + t i
kdi

k) ≤ fi (xk)+ αt i
k∇ fi (xk)

T di
k = fmin(xk)+ αt i

k∇ fi (xk)
T di

k < fmin(xk).

Therefore, (15) follows from (14). 
�

In Lemma 4.1 we prove that, in a convergent subsequence generated by Algorithm U2, at
most finitely many iterations are of type U1.

Lemma 4.1 Assume that {xk} is an infinite sequence generated by Algorithm U2 and K is
an infinite sequence of indices such that limk∈K xk = x∗. Then, for all k ∈ K large enough,

min
i∈Imin(xk )

{‖∇ fi (xk)‖} ≤ δ.

Proof Assume that the thesis is not true. Then, there exists K1, an infinite subsequence of
K , such that

‖∇ fi (xk)‖ > δ for all i ∈ Imin(xk), k ∈ K1. (16)
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Define K1 = {k0, k1, k2, k3, . . .}, k j < k j+1 for all j and

y j = xk j for all j = 0, 1, 2, . . . .

By (16) and the choice of Jk in this case, the sequence {y j } is generated as in Algorithm
U1. Therefore, there exists i ∈ {1, . . . , m} such that Jk j = {i} ⊂ Imin(xk j ) infinitely many
times. By Theorem 3.2, i ∈ Imin(x∗) and ∇ fi (x∗) = 0. Therefore, by the continuity of ∇ fi ,
lim j→∞ ‖∇ fi (xk j )‖ = 0. This implies that (16) is false. 
�

In Theorem 4.2 we prove that Algorithm U2 necessarily produces strongly critical points.

Theorem 4.2 If x∗ is a limit point of a sequence generated by Algorithm U2, then x∗ is
strongly critical. Moreover, given ε > 0, there exists k ∈ IN such that

‖∇ fi (xk)‖ ≤ ε for all i ∈ Imin(xk).

Proof Let K = {k0, k1, k2, . . .} be such that limk∈K xk = x∗.
By Lemma 4.1 and the definition of Algorithm U2, we may assume, without loss of

generality, that

Jk = { j ∈ {1, . . . , m} | f j (xk) ≤ fmin(xk)+ ε and ∇ f j (xk) �= 0}
for all k ∈ K .

Assume that i ∈ Imin(x∗). Our aim is to prove that ∇ fi (x∗) = 0.
Clearly, fi (x∗) = fmin(x∗). So, by the continuity of fi and fmin,

fi (xk) ≤ fmin(xk)+ ε. (17)

for k ∈ K large enough. By continuity, if ∇ fi (xk) vanishes infinitely many times for k ∈ K ,
we are done. Otherwise, we may assume, without loss of generality, that ∇ fi (xk) �= 0 for all
k ∈ K . Therefore, by (17), i ∈ Jk for all k ∈ K . Moreover,

lim
k∈K

fi (xk)− fmin(xk) = fi (x∗)− fmin(x∗) = 0. (18)

By the definition of the algorithm, for j large enough we have:

fmin(xk j+1) < fmin(xk j+1) ≤ fi (xk j + t i
k j

di
k j

) ≤ fi (xk j )+ αt i
k j
∇ fi (xk j )

T di
k j

= fmin(xk j )+ [ fi (xk j )− fmin(xk j )] + αt i
k j
∇ fi (xk j )

T di
k j

. (19)

By (11), αt i
k j
∇ fi (xk j )

T di
k j

< 0. Assume, for a moment, that there exists c > 0, j0 ∈ IN ,
such that

αt i
k j
∇ fi (xk j )

T di
k j

< −c (20)

for all j ≥ j0. But, by (18), there exists j1 ≥ j0 such that

fi (xk j )− fmin(xk j ) < c/2 (21)

for all j ≥ j1. So, by (19), (20) and (21), we have that fmin(xk j+1) ≤ fmin(xk j ) − c/2 for
all j ≥ j1. This implies that lim j→∞ fmin(xk j ) = −∞ and contradicts the fact that, by
continuity, fmin(xk j ) → fmin(x∗). Therefore, the existence of c and j0 with the property
(20) is impossible. This implies that there exists K1, an infinite subsequence of K , such
that limk∈K1 αt i

k∇ fi (xk)
T di

k = 0. Therefore, by (11), limk∈K1 t i
k‖∇ fi (xk)‖‖di

k‖ = 0. If, for
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some subsequence K2 ⊂ K1, limk∈K2 ∇ fi (xk) = 0, we are done. So, let us assume that
‖∇ fi (xk)‖ is bounded away from zero for k ∈ K1. In this case,

lim
k∈K

ti
k‖di

k‖ = 0. (22)

If, for some subsequence K3 ⊂ K1, limk∈K3 ‖di
k‖=0, then, by (11), limk∈K3 ‖∇ fi (xk)‖=0

and, thus, ∇ fi (x∗) = 0. So, we only need to consider the case in which ‖di
k‖ is bounded

away from zero for k ∈ K1. In this case, by (22), limk∈K1 t i
k = 0.

Therefore, without loss of generality, we may assume that t i
k < tone for all k ∈ K1. Then,

by (13), there exist t̄ i
k ≤ Mti

k , sk = t̄ i
kdi

k such that

fi (xk + sk) > fi (xk)+ α∇ fi (xk)
T sk for all k ∈ K1 (23)

and, by (22),

lim
k∈K1
‖sk‖ = 0. (24)

So, by (23) and the Mean Value Theorem, there exists ξk ∈ [0, 1] such that

∇ fi (xk + ξksk)
T sk = fi (xk + sk)− fi (xk) > α∇ fi (xk)

T sk (25)

for all k ∈ K1. Moreover, by (11),

∇ fi (xk)
T sk

‖sk‖ ≤ −θ‖∇ fi (xk)‖ (26)

for all k ∈ K1. Let K4 be a subsequence of K1 such that limk∈K4
sk‖sk‖ = s. By (24), dividing

both sides of (25) by ‖sk‖ and taking limits for k ∈ K4, we obtain:

∇ fi (x∗)T s ≥ α∇ fi (x∗)T s.

Since α < 1 and ∇ fi (xk)
T dk < 0 for all k, this implies that ∇ fi (x∗)T s = 0. Taking limits

on both sides of (26) we obtain that ‖∇ fi (x∗)‖ = 0.
Let us prove the second part of the thesis. If it is not true, then there exists K5, an infi-

nite subset of K and ε > 0 such that for all k ∈ K5 there exists i ∈ Imin(xk) such that
‖∇ fi (xk)‖ > ε. Clearly, the same index i must be repeated infinitely many times, and, tak-
ing limits, we obtain that i ∈ Imin(x∗) and ‖∇ fi (x∗)‖ ≥ ε. This contradicts the first part of
the thesis. 
�

Local and superlinear convergence results may be found in [3].

Remark Both Algorithms U1 and U2 aim convergence to local minimizers. Strong criticality
and weak criticality are generalizations of the condition∇ f (x) = 0 of smooth unconstrained
optimization. Strong criticality is stronger than weak criticality so that, in principle, Algo-
rithm U2 should be preferred. However (a) The iterations of Algorithm U2 are more expensive
than the ones of Algorithm U1; (b) In all our experiments, the critical points obtained by
Algorithm U1 were strongly critical. Of course, the existence of relevant applications in
which the use of Algorithm U2 could be essential for obtaining practical solutions cannot be
discarded.
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5 Constrained LOVO problems

In this section we consider LOVO problems with constraints and we define a natural extension
of the Augmented Lagrangian Algorithm (in the version described in [7]) to these problems.

We consider the problem

Minimize fmin(x) subject to h(x) = 0, g(x) ≤ 0, (27)

where fi : IRn → IR for all i = 1, . . . , m, h : IRn → IRnh , g : IRn → IRng and all these
functions are smooth.

For all x ∈ IRn, ρ ∈ IR++, λ ∈ IRnh , µ ∈ IR
ng
+ we define the Augmented Lagrangian

associated with fi by:

Li (x, λ, µ, ρ) = fi (x)+ ρ

2

[∥∥∥∥h(x)+ λ

ρ

∥∥∥∥
2

+
∥∥∥∥

(
g(x)+ µ

ρ

)

+

∥∥∥∥
2
]

.

The Augmented Lagrangian associated with fmin is defined by

Lmin(x, λ, µ, ρ) = fmin(x)+ ρ

2

[∥∥∥∥h(x)+ λ

ρ

∥∥∥∥
2

+
∥∥∥∥

(
g(x)+ µ

ρ

)

+

∥∥∥∥
2
]

.

Let us define, for all x ∈ IRn ,

Imin(x) = {i ∈ {1, . . . , m} | fi (x) = fmin(x)}.
Observe that

Imin(x) = {i ∈ {1, . . . , m} | Li (x, λ, µ, ρ) = Lmin(x, λ, µ, ρ)}
for all λ ∈ IRm, µ ∈ IR p

+, ρ > 0.

5.1 Algorithm C-LOVO

Let x0 ∈ IRn be an arbitrary initial point.
The parameters for the execution of the algorithm are: τ ∈ [0, 1), γ > 1, −∞ < λ̄min <

λ̄max < ∞, 0 ≤ µ̄max < ∞, ρ1 ∈ IR++, [λ̄1] j ∈ [λ̄min, λ̄max] ∀ j = 1, . . . , nh, [µ̄1] j ∈
[0, µ̄max] ∀ j = 1, . . . , ng, ε1 > 0.

Step 1 Initialization
Set k ← 1. For j = 1, . . . , ng , compute [σ0] j = max{g j (x0), 0}.
Step 2 Solving the subproblem
Compute xk ∈ IRn such that

‖∇Li (xk, λ̄k, µ̄k, ρk)‖∞ ≤ εk (28)

for some i ∈ Imin(xk).
Step 3 Estimate multipliers
For all j=1, . . . , nh , compute [λk+1] j=[λ̄k] j + ρkh j (xk) and [λ̄k+1] j ∈ [λ̄min, λ̄max].
For all j=1, . . . , ng , compute [µk+1] j=max{0, [µ̄k] j + ρk g j (xk)}, [σk] j=max{g j (xk),

−[µ̄k ] j
ρk
}, and [µ̄k+1] j ∈ [0, µ̄max].

Step 4 Update the penalty parameters
If max{‖h(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖σk−1‖∞}, define ρk+1 = ρk .
Else, define

ρk+1 = γρk .
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Step 5 Begin a new outer iteration
Compute εk+1 > 0. Set k ← k + 1. Go to Step 2.
The obvious way to solve (28) is to apply Algoritm U1 or Algorithm U2 to

Minimize Lmin(x, λ̄k, µ̄k, ρk).

Both algorithms guarantee that a point satisfying (28) can be found, provided that the gener-
ated sequence is bounded.

In Theorem 5.1 we prove that Algorithm C-LOVO finds stationary points of the constraint
infeasibility.

Theorem 5.1 Assume that {xk} is an infinite sequence generated by Algorithm C-LOVO
with εk → 0 and that x∗ is a limit point. Then, x∗ is a stationary point of

Minimize
nh∑

j=1

h j (x)2 +
ng∑

j=1

max{0, g j (x)}2.

Proof Since {xk} is infinite, there exists i ∈ {1, . . . , m} such that (28) holds for fi infinitely
many times. Taking the corresponding subsequence of {xk}, it turns out that this subsequence
may be thought to be generated by the Augmented Lagrangian Algorithm [7] applied to the
minimization of fi . Therefore, the thesis follows as in Theorem 4.1 of [7]. 
�

In the next theorem we prove that feasible limit points are stationary provided that they
satisfy the Constant Positive Linear Dependence (CPLD) constraint qualification. The CPLD
condition was introduced in [30] and its status as a constraint qualification was elucidated
in [4]. This condition says that, if a subset of gradients of active constraints are positive linear
dependent (linearly dependent with nonnegative coefficients corresponding to the inequali-
ties) at a feasible point x̄ , then the same set of gradients is linearly dependent for all points
(feasible or not) in a neighborhood of x̄ . The CPLD condition is strictly weaker than the
Mangasarian-Fromovitz [24,31] constraint qualification.

Theorem 5.2 Assume that {xk} is an infinite sequence generated by Algorithm C-LOVO
with εk → 0, x∗ is a limit point and the CPLD constraint qualification is fulfilled at x∗. Then,
there exists i ∈ Imin(x∗) such that x∗ is a KKT point of

Minimize fi (x) subject to h(x) = 0, g(x) ≤ 0.

Proof As in Theorem 5.1, consider an infinite subsequence of {xk} such that (28) holds with
the same index i for all the terms of this subsequence. Again, this subsequence may be thought
as having been generated by the smooth Augmented Lagrangian Algorithm applied to the min-
imization of fi . By Theorem 4.2 of [7], there exists x∗ satisfying the thesis of the present theo-
rem. The fact that i ∈ Imin(x∗) follows trivially from Li (xk, λ̄k, µ̄k, ρk) ≤ L j (xk, λ̄k, µ̄k, ρk)

for all j . 
�

Remark In (28) we assume that, at each outer iteration of Algorithm C-LOVO we obtain
an approximate weak critical point of the unconstrained Augmented Lagrangian. With this
assumption, we obtain, in Theorem 5.2, a weak critical point of the constrained LOVO prob-
lem. Let us show that the strong-criticality of xk would not guarantee strong criticality at the
solution of the constrained problem. Take n = 1, p = 2, nh = 0, ng = 1, f1(x) = (x−1)2/2,
f2(x) = (x + 1)2/2, g1(x) = x . Define µ̄k = 0 for all k. Then:

L1(x) = f1(x)+ ρ(x+)2/2, L2(x) = f2(x)+ ρ(x+)2/2
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For all k we have that xk ≡ 1/(1+ρk) is a strong critical point of Lmin. (xk is a minimizer of L1

and L2(xk) > L1(xk) for all k.) Clearly, x∗ = 0 is a minimizer of f1(x) subject to g1(x) ≤ 0
but is not a KKT point of f2 subject to the same constraint. However, f1(x∗) = f2(x∗), so x∗
is not a strong critical point of the constrained problem. This example shows the assumption
of strong criticality at xk would be useless in terms of the solutions that can be obtained by
C-LOVO.

Under additional local assumptions, similarly to [7], it may be proved that penalty
parameters remain bounded. See [3] for details.

If one is able to find global minimizers of the unconstrained subproblems addressed in the
Augmented Lagrangian Algorithm, then limit points are global minimizers of the constrained
problem, since this property depends only on the continuity of the objective function and
constraints [7]. We state this important property in the following theorem. A generalization
of this theorem may be found in [14].

Theorem 5.3 Assume that the feasible region of the original constrained problem is non-
empty and that, in Algorithm C-LOVO, xk is a global minimizer of the subproblem for all k.
Then, every limit point of {xk} is a global minimizer of the constrained LOVO problem.

6 Hidden patterns and Protein Alignment

Let Q = {Q1, . . . , QN } ⊂ IRnq , P = {P1, . . . , PM } ⊂ IRn p . The goal is to find the struc-
ture defined by Q in the set P . Strictly speaking, we aim to find a transformation operator
D : IRnq → IRn p such that some subset of {D(Q1), . . . , D(QN )} fits some subset of P .
For example, assume that nq = 3, n p = 2 and that the P is the set of possible “shadows”
of the points in Q. Therefore, we wish to find the rigid-body displacement of Q such that
(say) the two-dimensional points represented by the x − y coordinates of the displaced Q fit
P in the best possible way. So, D will be the composition of a rigid-body movement with a
projection. A lot of applications of this general problem can be given, from medicine tissue
recognition to security systems. Let us show here how the problem can be modelled in terms
of LOVO.

Define N the set of N−uples ν = (ν(1), . . . , ν(N )), where ν(i) ∈ {1, . . . , M} for all
i = 1, . . . , N . (In other words, N = {1, . . . , M}N ).

Let D be an admissible transformation. For all ν ∈ N we define fν(D) =∑N
i=1 ‖D(Qi )−

Pν(i)‖2. Finally, fmin(D) = minν∈N fν(D).

If there exists a set of N points of P that fits exactly a displacement D of Q we have that
fmin(D) = 0. The problem of minimizing fmin falls under the theory introduced in previous
sections.

Fortunately, the evaluation of fmin does not need the computation of all the functions fν .
In fact, given a transformation D, we compute, for all i = 1, . . . , N , Pc(i)(D) ∈ P such that

‖D(Qi )− Pc(i)(D)‖ ≤ ‖D(Qi )− P‖ ∀ P ∈ P. (29)

Then, fmin(D) =∑N
i=1 ‖D(Qi )− Pc(i)(D)‖2.

The two most common situations in applications correspond to dim = 2 and dim = 3. In
the first case the displacement may be represented by three parameters: the translation of the
center of gravity of Q and the angle of rotation. In the three-dimensional case, displacements
may be represented by the translation vector and three rotations, although other alternatives
are possible.
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A generalization of this problem is to find a common structure to the sets P and Q.
Suppose that we want to find a displacement D such that there exists R ≤ N points of Q
(say, Q j1 , . . . , Q jR ) such that D(Q j1), . . . , D(Q jR ) fit R points of P . In this case, we define
M as the Cartesian product between the subsets of R elements of {1, . . . , N } and the R-uples
of {1, . . . , M}. For all ν = ({ j1, . . . , jR}, (i1, . . . , iR)) ∈M, we define

fν(D) =
R∑

�=1

‖D(Q j� )− Pi�‖2

and the goal is to minimize fmin(D) ≡ minν∈M fν(D). Again, the computation of fmin is
simple: for all i = 1, . . . , N compute Pc(i)(D) ∈ P as in (29). Then, fmin(D) is the sum of
the R smaller values of ‖D(Qi )− Pc(i)(D)‖2.

Although the most obvious definition of a displacement operator involves only translation,
rotations and projections, more general definitions are possible. For example, the introduc-
tion of an additional parameter allows one to consider scale variations so that a given form
may be recognized in a structure regardless of its size. Moreover, if we replace the Euclid-
ean norm of the difference by a different distance function, we may obtain many alternative
case-oriented similarity measures.

Protein Alignment is a particularly important problem related to hidden-pattern identi-
fication. The goal is to find similarities between two proteins P and Q, represented by the
coordinates of their Cα atoms. The similarity is measured by a score. Several scores have
been proposed in the protein literature. One of the most popular ones is the Structal Score,
the definition of which is given now. Assume that the 3D-coordinates of the Cα atoms of
protein P (in angstroms) are P1, . . . , PM and the coordinates of the Cα atoms or protein Q
are Q1, . . . , QN . Under the rigid-body displacement D, the coordinates of the displaced pro-
tein Q are, therefore, D(Q1), . . . , D(QN ). Assume that � is a monotone bijection between
a subset of {1, . . . , M} and a subset of {1, . . . , N }. (We mean that i < j ⇒ �(i) < �( j)).
The Structal Score associated with the displacement D and the bijection � is:

St S(D,�) =
∑ 20

1+ ‖Pk − D(Q�(k))‖2/5
,−10× gaps, (30)

where the
∑

symbol involves the pairs (k,�(k)) defined by the bijection and gaps is the
number of cases in which at least one of the following situations occur:

• �(k) is defined, there exists � > k such that �(�) is defined, but �(�+ 1) is not defined;
• �−1(k) is defined, there exists � > k such that �−1(�) is defined, but �−1(�+ 1) is not

defined.

The Structal Alignment Problem consists of finding � and D such that St S(D,�) is
maximal. A global optimization procedure for achieving this objective was given in [22].
However, this method is not computationally affordable (see [22]) and, in practice, an heu-
ristic procedure called Structal Method [33] is generally used. In [23], the Structal Method
was reported as the best available practical algorithm for protein alignment. Each iteration
of the Structal Method consists of two steps:

1. Update �: Given the positions P1, . . . , PM and D(Q1), . . . , D(QN ), the monotone
bijection � that maximizes St S (fixing D) is computed using Dynamic Programming.

2. Update D: Assume that the graph of � is {(k1,�(k1)), . . . , (ks,�(ks))}. Then, the
rigid-body displacements that minimizes

∑s
�=1 ‖Pk�

− D(Q�(k�)‖2 is computed.
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The computation of D at the second step of the Structal Method involves the solution
of the well known Procrustes problem [20,21]. The main drawback of the Structal Method
is that the Update-� step aims at the optimization of a function (the Structal Score) with
respect to � and the Update-D step involves the optimization of a different function (the
sum of squared distances) with respect to D. This may lead to oscillation [26]. With the aim
of overcoming this problem we suggest a different algorithm (DP-LS), where the Update-�
phase at each iteration of the Structal Method is maintained but the Update-D iteration is
modified according to LOVO principles.

The idea is the following. Assume that {�1, . . . , �m} is the set of all the monotone
bijections between a subset of {1, . . . , M} and a subset of {1, . . . , N }. For each i = 1, . . . , m
and for each rigid-body displacement D, we define:

fi (D) = −St S(D,�i ).

Observe that fi is a smooth function of the displacement vector D. The Update-� phase
of the Structal Method, in the LOVO terminology, consists of finding i1(D). Dynamic Pro-
gramming is a quite efficient algorithm for this purpose. The second (Update-D) phase of
the DP-LS method consists of the computation of a search direction in the D-space for fi1

(we used a safeguarded Newton procedure) and the application of the ordinary line-search
of Algorithm U1. Therefore, DP-LS is Algorithm U1 applied to the maximization of the
Structal Score, both with respect to � and D.

The application of DP-LS to the alignment of proteins of the Protein Data Bank (PDB)
[11] is fully described in [26]. Using 79,800 individual protein comparisons it has been con-
cluded that DP-LS obtains the best scores in most meaningful cases and that the computer
time used by DP-LS is, on average, 2/3 the computer time employed by the Structal Method
on the tests reported in [26].

These facts are quite encouraging and makes the comparison of a single protein to all the
proteins of the PDB quite efficient and the all-to-all comparison affordable.

An additional LOVO algorithm for Protein Alignment (NB-Newton) was presented in
[26]. With the aim of improving computer time, instead of a monotone bijection, an arbitrary
correspondence is used. For good alignments, this algorithm obtained comparable scores to
DP-LS and it was 6 times faster than the Structal Method in terms of computer time. Other
LOVO methods for different types of chemical structures comparisons were suggested in
[9]. Algorithms for Protein Alignment based on LOVO ideas are publicly available in our
site www.ime.unicamp.br/~martinez/lovoalign. On-line alignments can be performed using
the facilities of this site. Initial approximations for the application of U1 were obtained using
a specific heuristic described in [26]. An algorithm that converges to global solutions of
the Protein Alignment problem was introduced in [22]. However, this algorithm is based on
evaluation of the objective function (which involves Dynamic Programming) on a grid in the
parameter space and, so, it is not practical.

7 Numerical examples

One of the main practical consequences of the theory introduced in Sections 2–5 of this paper
is that, in spite of the nonsmoothness of the LOVO problem, if we ignore the multiplicity
of gradients at a given point xk and we use straightforward smooth minimization solvers,
the bad consequences are rather mild. Many smooth optimization algorithms, when applied
to LOVO, may be considered particular cases of Algorithms U1 and C-LOVO. With this
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Fig. 1 Finding patterns of protein folding with LOVO

property in mind, we used, in our experiments, the unconstrained and constrained versions
of Algencan, the nonlinear-programming code available in the Tango project web-page
(www.ime.usp.br/~egbirgin/tango) with its default algorithmic parameters [7,8,13].

All the experiments were run on a computer with Pentium IV processor, 512 Mb of RAM
memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O”
was adopted.

7.1 A hidden-pattern example

We consider the application of LOVO described in Sect. 6. The points of P , represented in
Fig. 1a in light grey, are the 253 Cα atoms of the thyroid hormone receptor protein bound
to a IH5, a synthetic ligand (Protein Data Bank identifier 1NAV). The points of Q, in black
in Fig. 1a, are 78 Cα atoms of the C-terminal region of a similar protein, albeit bound to
a different ligand (PDB id. 1Q4X), which provides some structural differences. Therefore,
there is no set of points in P which exactly match the set Q. However, the proteins are
similar. The goal here is to identify which set of points in the target protein best matches the
points of the fragment. In other words, we aim to know whether there is a structural pattern
of the type defined by Q in the structure defined by P . This is the general definition of the
problem of Protein Fold Recognition, which has fundamental importance for the analysis of
protein function and evolution [17].

We used a multistart approach, since this type of problems may have many local minimiz-
ers. The variables of the problem are the ones that define the displacement D: three variables
for defining the translation and three variables for defining rotations around the coordinate
axes. Let B ⊂ IR3 be the smaller box that contains the protein P . The initial approximation
for the translation vector was taken as ξ − O where O is the center of gravity of Q and ξ is
a random point in B. The initial angles were taken uniformly randomly between 0 and 2π .

We ran the algorithm for 1,000 different initial points and obtained the best solution in
32 of these trials. In the best solution, the average distance between displaced points of Q
and the points of P was 1.07 Å (the best solution found is correct from the point of view of
protein function and is, very likely, the global solution). The execution of the unconstrained
algorithm used an average of 16 iterations. The total time of execution was 15.5 s, which
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implies an average of 0.0155 s per execution of the algorithm. The use of designed initial
points instead of random ones can greatly improve the tendency of the algorithm to converge
to global minimizers, as was shown for the protein alignment problem [26].

In Fig. 1b we show the superposition of the points in the best solution found. We note
that even when the alignment is good, its recognition is not obvious. Figure 1c shows the
same solution, but now represented as a Cα trace (consecutive points in the structure are
connected), and provides a clearer view of the alignment obtained (the fragment is in black
and the target protein is in light grey).

7.2 Fitting models with outliers

7.2.1 Unconstrained fitting

Assume that {(t1, y1), . . . , (tm, ym)} ⊂ IR2 is a set of data and we know that “some of them
are wrong”. Assume that T (x, ti ) is the predicted value of the observation i with the param-
eters x ∈ �. Least-squares fitting of the form yi = T (x, ti ) leads to unsatisfactory results
due to the overwhelming influence of outliers.

The LOVO approach for robust estimation of parameters consists in defining, for each
i = 1, . . . , r , the error function Fi (x) = (T (x, ti ) − yi )

2. Given p ∈ {1, . . . , r}, this set
of functions defines a LOVO problem. When p = r this LOVO problem coincides with the
classical nonlinear least-squares problem. However, the interesting situation is when p is
smaller than r . In that case, the solution of LOVO allows one to discard the influence of an
estimated number of outliers. If p = r we expect a large value of the LOVO function in the
solution. When p is decreased, the LOVO function at the solution tends to decrease as well.

To illustrate the behavior of the LOVO approach we consider a simple unconstrained
problem where T (x, ti ) is defined as

T (x, ti ) = x1exp[−ti x5] + x2exp[−(ti − x9)
2x6] + x3exp[−(ti − x10)

2x7]
+ x4exp[−(ti − x11)

2x8].

This is the Osborne-2 function (coming from Problem 19 of [27], where r = 65). Here we
introduced 13 additional data representing systematic errors.

As an initial approximation, we took the point indicated in [27]. For p = 67 and p = 63
the local solution obtained using this approximation was not satisfactory in the sense that
the monotonicity condition Sp(x p) ≤ Sp+1(x p+1) was violated. In these two cases we tried
100 different random (100%) perturbations of the initial point and reported the best solution
obtained in Table 1. The number of evaluations and computer time reported corresponds, in
these two cases, to the successful execution.

The results are shown in Table 1 and Fig. 2.
Table 1 shows the behavior of the method for different values of p. FE means Function

Evaluations and GE stands for Gradient Evaluations. Observe that, from p = 65 to p = 66
the functional value at the solution obtained increases four times. This is, by far, the biggest
percentual increase between two consecutive values of p and supports the decision that 65
should be the “correct” p. Of course, this is as expected, since the remaining data were
deliberately generated as outliers. In Fig. 2 one can appreciate that, for p = 65, the method
identifies correctly the outliers and produces a satisfactory model for the correct data. For
greater values of p, the fitted curved is distorted by the outliers.
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Table 1 Unconstrained fitting example

p Four first coordinates of x Sp(x) FE GE Iterations CPU Time (s)

78 1.27 0.38 0.48 0.59 2.74 58 41 36 0.0574

77 1.32 0.56 0.61 0.60 2.39 56 39 37 0.0602

76 1.34 0.51 0.62 0.61 2.02 33 22 20 0.0555

75 1.33 0.46 0.61 0.62 1.76 29 22 20 0.0552

74 1.31 0.50 0.61 0.81 1.53 36 27 25 0.0587

73 1.32 0.39 0.60 0.80 1.32 30 20 18 0.0583

72 1.32 0.41 0.60 0.70 1.11 29 20 18 0.0547

71 1.32 0.37 0.61 0.68 0.94 30 20 16 0.0540

70 1.34 0.40 0.61 0.66 0.75 24 18 16 0.0558

69 1.34 0.41 0.61 0.61 0.61 22 17 15 0.0552

68 1.33 0.35 0.60 0.61 0.42 25 17 15 0.0543

67 1.34 0.60 0.35 0.56 0.28 115 54 52 0.0646

66 1.29 0.35 0.60 0.57 0.17 21 15 13 0.0580

65 1.31 0.43 0.63 0.60 0.04 37 23 21 0.0565

64 1.26 0.39 0.62 0.58 0.03 26 19 17 0.0576

63 1.26 0.38 0.61 0.58 0.03 28 20 17 0.0555

Fig. 2 Unconstrained model fitting
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7.2.2 Constrained fitting

Assume that x1, . . . , xr satisfy the difference equations

xi+1 − 2xi + xi−1

h2 = �(ti , xi , z) (31)

for i = 2, . . . , r − 1, where z ∈ IRnpar is a vector of unknown parameters, h = 2/(r − 1),
ti = (i − 1)h. We want to find the correct values of x and the parameters z. The data of
the problem are y1, . . . , yr . Assume that approximately r − p data are wrong. So, defining
Fi (x, z) = (xi − yi )

2, the goal is to minimize Sp(x, z) subject to the constraints (31).
In the experiments reported here we took r = 21, npar = 3 and

�(xi , z) = z1exi − z2(x2
i + 1)ti − z3 sin(ti xi ).

The data were generated as follows. First, we found the exact solution of (31) that satisfies
x̄1 = 4, x̄r = 6 with z1 = 0.1, z2 = 1, z3 = 2. Then, we chose yi = x̄i + ξi , where ξi is
random between−0.05 and 0.05, for i = 4, . . . , r−2. The data y1, y2, y3, yr−1 and yr were
generated as outliers, much larger than the “correct” yi (Fig. 3). As initial approximations
for xi we took 100 random (100%) perturbations of the data yi . The initial approximations
of z1, z2, z3 were random between −10 and 10. The results reported in Table 2 correspond
to the best solution obtained for each p. In this table, “Outer” means the number of (outer)

Fig. 3 Model fitting with constraints
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Table 2 Constrained fitting example

p x1 xr z1 z2 z3 Sp(x) FE GE Inner Outer CPU Time (s)

21 7.2 8.6 0.2 1.7 0.4 5.267 121 81 74 6 0.167

20 7.4 8.1 0.3 2.6 1.1 1.709 77 53 45 6 0.166

19 45.7 8.2 4.1 38.9 31.4 0.127 341 318 312 2 0.251

18 7.1 0.7 1.0 9.3 7.3 0.039 96 66 59 3 0.104

17 7.1 −2.1 1.0 9.5 7.1 0.024 88 55 49 3 0.105

16 3.9 6.1 0.1 0.9 2.0 0.009 74 58 52 4 0.126

15 3.9 6.0 0.1 1.1 2.3 0.004 70 49 44 4 0.126

14 3.9 5.9 0.1 1.2 2.2 0.003 119 93 86 4 0.126

iterations performed by Algorithm C-LOVO. “Inner” means the number of (inner) iterations
used by the subproblem solver at Step 2 of C-LOVO. The biggest percentual increase of
Sp(x) is detected from p = 18 to p = 19. In Fig. 3 we observe that, for p = 16 the fitted
curve detects the outliers quite well and agrees with the correct model. However, for p = 18
the adjustment is still very good. (The only difference is due to the fact that for p = 18 the
observations y1, y3 were not considered outliers.) In both cases, the correct data are very well
reproduced. In this figure we also show, for completeness, the case p = 17 and the curve
obtained for p = 21, which is obviously distorted by the presence of the outliers.

8 Conclusions

The LOVO problem defined in this paper is, in general, nonsmooth and nonconvex. Here we
give (weak and strong) optimality conditions and introduce unconstrained and constrained
algorithms for its resolution. An important consequence of the theory, confirmed by exper-
iments, is that, unlike in most nonsmooth (even convex) problems, the consequences of
ignoring nonsmoothness are not severe. Briefly speaking, smooth optimization algorithms,
when applied to this problem, converge to weakly critical points and specific algorithms con-
verge to strong critical points. This allows us to take advantage of the availability of efficient
smooth optimization software.

The determination of the “correct” parameter p is very important in applications. At pres-
ent, we advocate using the value of p that maximizes the percentage increase of Sp(x p),
provided that this value is not unacceptably small, where x p is the solution of the LOVO
problems defined by p. However, the p-decision is quite case-sensitive.

The unconstrained algorithms introduced in this paper converge to different classes of
stationary points and produce monotonically descent sequences, in the sense that the objec-
tive function decreases at every iteration. In practice, we did not observe differences in the
behavior of these algorithms. Moreover, as subproblem solvers of the Augmented Lagrangian
method, both produce the same theoretical results for constrained problems. This corrobo-
rates our point of view that the main difficulty of LOVO problems lies in the presence of
many local minimizers. The development of powerful heuristics for overcoming this prob-
lem, finding initial points or escaping from local minimizers, will probably be subject of
interesting research in the coming years.

Applications to Hidden Pattern recognition and to Robust Model fitting seem to be
promising. Both problems are very important in many areas of Science and Engineering.
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Undoubtedly, in the presence of specific technological applications it will be necessary to
develop case-oriented algorithms but the possibility of using general software with reasonable
results (an unusual feature in Engineering Optimization) is very encouraging.

Future research on this subject should include:

• Using DC-Programming [28,29] in the case that all the functions Fi involved in the
LOVO problem are convex. In this case, the LOVO function has a natural decomposition
as a difference of two convex functions:

Sp(x) =
r∑

i=1

Fi (x)−
r∑

j=p+1

Fi j (x)(x)

and practical improvements may be expected from DC-Algorithms.
• Exploiting smooth reformulations like the one proposed in [2] for the OVO problem.
• Adaptation and development of global-optimization strategies for finding suitable initial

points to avoid the attractiveness of local-nonglobal minimizers.
• Development of constrained LOVO algorithms with convergence to strongly critical

points.
• Extensions of the LOVO approach to the case in which p is not fixed in advance. This

should enhance the applicability to similarity problems.
• Nonlinear programming problems with LOVO– and OVO–constraints.
• Sequential Quadratic Programming, Interior-Point and Restoration algorithms for non-

linearly constrained LOVO problems.
• Noisy Order-Value Optimization.
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