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Abstract

Motivation: The flow of vibrational energy in proteins has been shown not to obey expectations

for isotropic media. The existence of preferential pathways for energy transport, with probable con-

nections to allostery mechanisms, has been repeatedly demonstrated. Here, we investigate

whether, by representing a set of protein structures as networks of interacting amino acid residues,

we are able to model heat diffusion and predict residue-protein vibrational couplings, as measured

by the Anisotropic Thermal Diffusion (ATD) computational protocol of modified molecular dy-

namics simulations.

Results: We revisit the structural rationales for the precise definition of a contact between amino

acid residues. Using this definition to describe a set of proteins as contact networks where each

node corresponds to a residue, we show that node centrality, particularly closeness centrality and

eigenvector centrality, correlates to the strength of the vibrational coupling of each residue to the

rest of the structure. We then construct an analytically solvable model of heat diffusion on a net-

work, whose solution incorporates an explicit dependence on the connectivity of the heated node,

as described by a perturbed graph Laplacian Matrix.

Availability and Implementation: An implementation of the described model is available at http://

leandro.iqm.unicamp.br/atd-scripts.

Contact: leandro@iqm.unicamp.br

1 Introduction

Localized vibrational perturbations do not propagate isotropically in

proteins. The existence of preferential pathways through which vibra-

tional energy flows more rapidly has been observed in a myriad of stud-

ies, both experimental and computational (Leitner, 2008). These

pathways have been implied in allostery mechanisms (Ribeiro and

Ortiz, 2016), which allow perturbations caused by a local event such as

the binding of an agonist to be efficiently transmitted through the pro-

tein core to effect a conformational (Laskowski et al., 2009) or dynam-

ical (Tzeng and Kalodimos, 2011) change at a distant site (Motlagh

et al., 2014), as well as in the maintenance of functional conformations

in the face of thermal perturbations (Lampa-Pastirk and Beck, 2006).

While the efficiency of such pathways may be under specific selective

pressures in proteins where they are crucial for stability or function, their

existence may be a general feature not dependent on the particular char-

acteristics of each structure. It has been noted by Liang and Dill that, al-

though solid-like densities and compressibilities are observed, detailed

investigation describes an interior that is akin to randomly packed

spheres, at a density close to the percolation threshold (Liang and Dill,

2001). Transport channels arise naturally in percolation clusters

(Rhodes and Blunt, 2007), which indicates that the existence of prefer-

ential transport channels in globular proteins may be a consequence of

their geometry. This, in turn, would imply that the potential for allostery

is present in all proteins, a hypothesis which is corroborated by the ex-

perimental observation of allosteric communication in nonallosteric pro-

teins (Clarkson et al., 2006; Gunasekaran et al., 2004; Leitner, 2008).

Under the ‘preferential pathways’ picture of energy transport,

one might expect that the nature and amount of connections made
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by each residue be one determinant factor for distinguishing those

most relevant for diffusion. Here, we set out to investigate this con-

jecture. In order to do so, we revisit a formal definition for networks

that represent protein structures and discuss a method for character-

izing the connectivity of the node representing each residue. We then

compare the results to a measure of the strength of each residue’s vi-

brational coupling to the rest of the structure, as obtained by a

modified molecular dynamics computational experiment.

2 Approach

Krishnan et al. argue that the network framework presents strong

advantages as a protein modeling tool: proteins exhibit a natural di-

mension of discretization, the amino acid residue sequence, which

models should be able to exploit by adopting a relative geometry

where only the relationships between elements matter, such as meas-

uring inter-residue distance as opposed to absolute residue position.

If these relationships are tabulated in a square, symmetrical matrix,

then such a construction affords direct interpretation as an adja-

cency matrix, which is a complete description for a network

(Krishnan et al., 2008). From these networks, quantitative topo-

logical descriptors may be derived which allow comparison across

different proteins. Graph Theory provides a wide assortment of such

measurements, and the reader is directed to, e.g. the review by Costa

et al. for a survey (Costa et al., 2007). The task remains, though, to

make physical sense of those measurements, in particular identifying

those which are strongly correlated with relevant physicochemical

characteristics of the represented protein.

One such descriptor that has been consistently linked to relevant

properties is centrality, formalized by Freeman in a 1978 review

with respect to the structural properties of human communication

networks (Freeman, 1978). Although an intuitive concept, centrality

can be formalized in more than one way, with each ‘flavor’ possess-

ing a distinct structural interpretation. Freeman defines three differ-

ent measures of centrality, namely degree, betweenness and

closeness centrality, each based on a different rationale, though their

values exhibit a measure of correlation with each other. It is gener-

ally accepted that degree (i.e. number of contacts) is the least in-

formative of the three, being focused on local interactions and blind

to the network’s global structure.

Of these descriptors, Vendruscolo et al. have shown that, in net-

works representing the folding transition state ensemble for a set of

six proteins, high values of betweenness centrality distinguish nodes

that represent residues experimentally identified as critical to the

folding process. This information is, however, concealed in the na-

tive state by other high-betweenness residues that cannot be singled

out as important to the folding process (Vendruscolo et al., 2002).

Del Sol and O’Meara have shown that, when a two-protein complex

is modeled as a network, residues lying at the interface can be identi-

fied by their high betweenness, which is consistent with betweenness

centrality’s structural interpretation. However, most of these resi-

dues are not remarkably central when each interacting chain is ana-

lyzed by itself (del Sol and O’meara, 2005). Amitai et al. have also

demonstrated that high closeness centrality can identify conserved

positions, and predicts the active site and other functional sites of

the protein, by itself or by significantly improving the performance

of methods based on the conservation and surface accessibility of

residues (Amitai et al., 2004).

In light of these results, we propose that centrality is a suitable

measure to characterize the connectivity of a residue in the context

of heat propagation within the structure. To test this hypothesis, we

employ a computational strategy that allows direct observation of

the flow of energy in a structure, the Anisotropic Thermal Diffusion

(ATD) protocol. Proposed by Ota and Agard (2005) and extended

into a systematic methodology by Mart�ınez et al. (2011), the ATD

protocol has also been employed to observe possible directional

asymmetry (rectification) in heat flow through hydrogen bonds

(Mi~no-Galaz, 2015). An ATD computational experiment consists of

cooling a protein structure to a very low temperature, then separ-

ately heating each residue and measuring the temperature of the

structure after a fixed interval. In this way it is possible to quantify

the strength of the vibrational coupling of each residue to the protein

as a whole. Residues which are outstanding at quickly dissipating

excess vibrational energy have been shown to be essential to the

maintenance of protein activity, as demonstrated by mutagenesis ex-

periments (Mart�ınez et al., 2011). We investigate whether those resi-

dues correspond to nodes of higher than average centrality in the

corresponding residue networks.

3 Materials and methods

3.1 Network construction
No consensus is observed in the literature regarding the correct

protocol to construct a network to represent a protein structure.

Though studies mostly tend to represent the amino acid residues as

the nodes in the network, thus favoring a scale which is coarser than

the usual atomic representation, there is no agreement on what de-

fines a contact between residues, to be represented by an edge be-

tween the corresponding pair of nodes (see Krishnan et al., 2008;

Böde et al., 2007). Alternative definitions include, but are not lim-

ited to:

• Adding an edge between two nodes when the distance between

the Ca of the corresponding residues is less than or equal to 8.5 Å

(Dokholyan et al., 2002).
• Adding an edge between two nodes when there exists a pair of

atoms such that each belongs to one of the corresponding resi-

dues, and the distance between them is less than or equal to

5.0 Å (Greene and Higman, 2003).
• Adding an edge between two nodes when the total energy of the

interaction between the corresponding residues meets a predeter-

mined threshold that depends on the nature of the residues

(Amitai et al., 2004).

No formal justification is provided for these definitions, and while it

may be argued that the observed correlations between network de-

scriptors and physicochemical properties, when they exist, may de-

pend only weakly on the precise protocols employed to construct

the networks, we assert that some protocols are to be preferred on

independent theoretical grounds.

Miyazawa and Jernigan, in a well-known 1985 paper that is

among the earliest investigations of internal packing in proteins

(Miyazawa and Jernigan, 1985), estimate the effective inter-residue

contact energy by counting contacts in crystal structures.

Calculating energies from contact frequencies, they present a series

of arguments to establish a definition for a contact in the first place:

two interior residues are considered in contact when the centers of

mass of their respective side-chains are less than 6.5 Å apart. To jus-

tify this definition, they measure the radial distribution of interior

residues, each represented by the position of the center of mass of its

side chain and each not counting its covalent neighbors, over a sam-

ple of 42 globular proteins (their 1996 update on the same work

examines a larger sample of 1168 structures (Miyazawa and
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Jernigan, 1996)). They note that the first peak occurs at a distance

of 5.0 Å but extends up until about 6.5 Å, which they adopt as the

contact cutoff distance and report to be consistent with the calcu-

lated average residue radius of 2.91 Å, given the average residue vol-

ume and packing density. We perform similar measurements on a

much larger set of 10 569 structures from the ASTRAL subset of

non-redundant protein structures (release 1.75 of 2009, including

only proteins with less than 40% identity to each other) (Chardonia

et al., 2004), derived from the SCOP database (Lo Conte et al.,

2000), and obtain distributions that are much more detailed but

support similar conclusions.

We report the generic all-site radial distribution function for pro-

tein structures, the average of the all-site radial distributions calcu-

lated for each entry in the database. We follow the usual definition:

for each structure, we count the number of neighbors seen at a dis-

tance between r and rþdr, as a function of r, by each of its N heavy

atoms (ASTRAL structures are provided without Hydrogen atoms).

The obtained curve is normalized by the radial distribution function

of the corresponding reference state, the average of 5 curves calcu-

lated from 5 independently generated sets of N random points, each

approximately contained inside the target structure’s volume.

In the actual implementation, we take advantage of the relative

formalism by calculating once for each structure or distribution the

distance between all pairs of points and filling a distance matrix,

then iteratively extracting from it the total number of contacts,

defined as the number of pairs whose distance is smaller than a given

cutoff, as a function of cutoff. From the total number of contacts in

a structure, CstrðrÞ, and its reference state, CrndðrÞ, the radial distri-

bution function is calculated from the definition as in Equation (1).

Results are shown in Figure 1, panel a.

gðrÞ ¼
�

1

3r2

d

dr
r3 CstrðrÞ

CrndðrÞ

� ��
all structures

(1)

It is readily observable that ordered structure persists up to a radius

of at least 5.0 Å but arguably up to 7.0 Å around each site, establish-

ing a tentative upper value for the cutoff distance that defines a con-

tact, though of course the range of the effective pair interaction may

be shorter and still lead to observable long-range structure associ-

ated to indirect neighbors.

To provide a complementary perspective, we also calculate a

variation of the radial distribution function aggregated at the residue

scale, the closest contact distribution function gRðrÞ, akin to the

solvation-shell radial distribution gssðrÞ described in (Song et al.,

2000). We take into account only the closest contact between each

pair of residues, in such a way that nearest neighbors only contribute

to peaks corresponding to their actual contact distance, despite dif-

ferences in size and orientation (see Figure 2a and companion text in

Song et al., 2000 for an illustration of the sharper, more interpret-

able peaks obtained using this procedure).

We implement the calculation in the relative formalism; if the

rows and columns of the atom distance matrix are indexed in such a

way that atoms which belong to the same residue are always con-

tiguous, then it may be partitioned in blocks, one for each residue

pair, from which a residue adjacency matrix may be derived by in-

spection—residues i and j are in contact if, after the application of a

given cutoff, there is at least one non-zero element in the ij block of

the atom adjacency matrix (We note that if this procedure is used to

define a distance measure in residue space, then this distance does

not obey the triangle inequality and can’t define a metric space.).

The same procedure is applied to the atom adjacency matrix of each

random distribution to construct the reference state (atoms in the

random distribution are considered to belong to the same residue as

the atom of the original structure that they are closest to when gen-

erated), and the rest of the analysis proceeds as before. Results are

reported in Figure 1, panel b. Covalent neighbors must be respon-

sible for the trivial first peak, so the second, broad peak from about

2.5–5.5 Å must be attributed to non-covalent direct contacts.

Moreover, the definition of gRðrÞ implies that peaks corresponding

to indirect (or ‘second’) neighbors are expected at a distance r no

shorter than one full residue diameter, and are thus consistent with

the third, subdued peak centered at 7.0 Å. In light of these results,

we submit that a cutoff of at most 6.0 Å is the appropriate max-

imum distance to define a contact between two residues based on

the distance between all pairs of atoms.

In the interest of completeness, we also report the radial distribu-

tion function for the Ca atoms, gaðrÞ, in order to investigate the criter-

ion employed in (Dokholyan et al., 2002). The calculation is identical

to the all-site radial distribution previously described, and the results

are reported in Figure 1, panel c. The sharp peak at 3.8 Å is identifi-

able as associated to the Ca–Ca distance between consecutive residues

in the chain, so the broad, double peak from 4.9 Å to 6.7 Å is likely

to correspond to the Ca–Ca distance for residues in direct, non-

covalent contact. The next peaks, centered at 8.6 Å and 10.0 Å, are

difficult to distinguish from the baseline expectation and may corres-

pond to indirect contacts with very low associated coupling, thermal

or otherwise. Thus, we argue that the 8.5 Å value used in (Dokholyan

(a) (b) (c)

Fig. 1. (a) Average radial distribution function for all heavy atoms of all proteins in the ASTRAL subset of the SCOP database, release 1.75. Recognizable features

include the double peak centered at 1.5 Å, compatible with a typical distance for covalent bonds, and the peak at 2.6 Å, associated to Hydrogen bonds. The peak

at 3.8 Å appears to be induced by regularities in the bond network introduced by elements of secondary structure (compare panel c), and is also compatible with

van der Waals contacts. (b) Average closest contact distribution function (see text for description) for the same set of structures. The vertical scale is set to one

fifth of the first peak’s intensity in order to improve readability. (c) Average radial distribution function for Ca atoms for the same set of structures. The prominent

3.8 Å peak associated to the typical Ca–Ca distance in the trans conformation of the peptide bond is readily recognizable
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et al., 2002) is unnecessarily large and may include confounding con-

tacts; we propose that a cutoff of 6.7 Å is adequate to determine con-

tacts based on the distance between Ca atoms.

3.2 Correlation with heat propagation
Having established a protocol to extract representative networks

from protein structures, we construct networks for a set of seven

proteins (pdb: 1F5J (McCarthy et al., 2000), 1M4W (Hakulinen

et al., 2003), 1XNB (see Wakarchuk et al., 1994), 2VUJ and 2VUL

(Dumon et al., 2008), 1YS1 (Mezzetti et al., 2005) and 2PRG

(Nolte et al., 1998)) for which we have access to energy diffusion

data obtained via the Anisotropic Thermal Diffusion (ATD) simula-

tion protocol (Mart�ınez et al., 2011), a modification on conven-

tional molecular dynamics simulations designed to observe and

quantify the diffusion of a localized thermal energy excess over a

short time scale. For each protein, we examine the final temperature

reached after a fixed time as a function of which residue is inde-

pendently coupled to the hot thermal reservoir. Inspection of the

obtained plots reveals that the final temperature varies (approxi-

mately) smoothly with residue index, suggesting a mechanism influ-

enced by the local neighborhood of each residue. To investigate

whether we can capture this mechanism in network descriptors, we

investigate the correlation between final protein temperature and

each of a set of several different centrality measures; we discuss def-

initions and structural rationales for the chosen measures next.

The degree centrality of a node is the number of contacts made

by that node in the network, CdðkÞ ¼ dðkÞ following usual graph

theoretical notation. Where it is relevant, the measure is normalized

by the maximum possible degree in a graph of N nodes, which is

N – 1. Although somewhat rudimentary, degree centrality might

capture some features of energy transfer in proteins, to the extent on

which it may depend exclusively on the local neighborhood of each

residue. Degree is also the simplest example of a number of central-

ity measures based on counting walks originating on the target

node, as argued in (Benzi and Klymko, 2015); the degree of k, dðkÞ,
is equivalent to the number of 1-walks which originate at k. We also

investigate the longer-ranged subgraph centrality CSðkÞ, which is the

sum of the number of closed walks of all lengths originating at node

k, weighted by a function of walk length to guarantee convergence

and attribute greater importance to shorter walks, as well as eigen-

vector centrality, CEðkÞ, which is the fraction of l-walks which ori-

ginate at k over all l-walks, taken as l goes to infinity and therefore

of a much more global character.

The closeness centrality of a node is the inverse of the sum of the

distances from it to all other nodes; CCðkÞ ¼ 1=
P

i dði; kÞ, where

d(i, k) is the length of the shortest path between nodes i and k.

Closeness centrality is normalized by the theoretical maximum

1=ðN � 1Þ in a graph of N nodes, corresponding to the closeness of

a node which is connected to all others. The concept of closeness is

introduced as being inversely proportional to the time it takes for a

message to reach the entire network when originating from a given

node (see Bavelas, 1948), assuming that signals travel exclusively (or

highly preferentially) through shortest paths, and by taking into ac-

count global features of the network it might also correlate to heat

diffusion ability better than degree.

The betweenness centrality of a node is defined as the frequency

with which it lies on the shortest paths between all pairs of nodes

excluding itself. Formally, the betweenness centrality of node k is

given by CBðkÞ ¼
P

i

P
j>i

gijðkÞ
gij

, where gij is the number of geodesics,

that is, of distinct paths of length equal to distance between i and j,

and gijðkÞ is the number of such paths that contain k. Where it is

relevant, betweenness centrality is normalized by the maximum pos-

sible betweenness in a graph of N nodes, which is shown to be n2�3nþ2
2

for the node in the center of a star graph. Though often included in

structural analyses, it is unclear whether betweenness might be an ad-

equate descriptor for dynamical properties such as propensity to dif-

fuse energy. Based on a similar rationale, we also investigate the

participation coefficient or P-value, as introduced in (Guimer�a and

Amaral, 2005). From a given, independent partition of the graph into

modules (see e.g. Newman and Girvan, 2004), the P-value of a node

is a measure of the fraction of its connections which go to nodes in

different modules than itself, and is calculated as

Pk ¼ 1�
P

m dmðkÞ=dðkÞ, where the sum is over all modules and dmð
kÞ is the number of connections from node k to nodes in module m.

Here, we use the software described in (Guimer�a and Amaral, 2005)

to obtain optimal network partitions for each structure before calcu-

lating node P-values.

4 Results

4.1 Correlation of centrality measures with heat

diffusion
We constructed network models and calculated values for all cen-

trality measures for each residue in each protein, plotting residue

centrality as a function of residue index for each protein (see Fig. 2).

We then calculated, for each protein, how each centrality plot cor-

relates to a plot of final protein temperature as a function of which

residue is initially heated in an ATD experiment. We report the

results in Table 1. Betweenness centrality consistently reproduces

the ATD data worse than degree or subgraph centrality, which in

Table 1. Correlation between centrality measures by residue index

and final protein temperature by heated residue, for a set of seven

proteins

Pearson’s correlation coefficient (r)

Centrality Measure 1F5J 1M4W 1XNB 2VUJ 2VUL 1YS1 2PRG

Closeness (CC) 0.754 0.741 0.723 0.771 0.754 0.746 0.634

Betweenness (CB) 0.644 0.603 0.606 0.615 0.625 0.588 0.506

Degree (Cd) 0.723 0.736 0.717 0.723 0.703 0.746 0.546

Subgraph (CS) 0.708 0.686 0.698 0.724 0.712 0.578 0.542

Eigenvector (CE) 0.757 0.734 0.724 0.766 0.738 0.689 0.589

Participation coef. (P) 0.374 0.432 0.349 0.527 0.511 0.527 0.513

Fig. 2. Correlation between closeness centrality as a function of residue index

and final protein temperature as a function of which residue is coupled to the

heat bath in an ATD simulation, for the 1F5J structure. Both measures are

given as Z-Score, that is, deviation from the mean expressed as number of

standard deviations
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turn perform worse than closeness and eigenvector centrality.

Furthermore, we observe that the participation coefficient varies in

this case too sharply between neighboring residues, and thus fails to

adequately reproduce ATD data while correctly capturing the gen-

eral direction of variation. We also produced scatter plots for each

correlation (examples are shown in Fig. 3); inspection reveals betwe-

enness centrality and subgraph centrality in particular fail to repro-

duce the temperature distributions associated to the subset of

residues with the weakest coupling to the rest of the structure.

4.2 Model of heat diffusion in a network
Along with the aforementioned measures of centrality, we explore an

analytically solvable model for heat transfer in a network, corroborat-

ing and expanding on earlier results such as (Szalay and Csermely,

2013), which reports findings similar to those presented in this section.

We define a measure of ‘local temperature’ at each residue, calculated

from the average kinetic energy of its atoms in the same fashion as the

temperature of the entire system, and write the differential equation

for heat diffusion on the network as a function of the local tempera-

tures and the connectivity between residues. We then solve it for a par-

ticular case corresponding to a strong local imbalance where a single

residue has a much higher initial temperature than all others.

Let Aij be the elements of the residue adjacency matrix. The total

temperature change at time t for residue i will depend on the tempera-

ture difference between residue i and all other residues it is connected to:

dTiðtÞ
dt

¼ k
X

j

AijðTjðtÞ � TiðtÞÞ

where k is a constant analogous to the thermal diffusivity between

residues. Breaking up the sum, we write:

dTiðtÞ
dt

¼ k
X

j

AijTjðtÞ � kTiðtÞ
X

j

Aij

The sum
P

j Aij of row i of the adjacency matrix is the degree of

node i, dðiÞ. We substitute and obtain:

dTiðtÞ
dt

¼ k
X

j

AijTjðtÞ � kTiðtÞdðiÞ

Solving for the set of TiðtÞ as a column vector, we write:

dTðtÞ
dt
¼ kATðtÞ � kDTðtÞ ¼ �kðD�AÞTðtÞ ¼ �kLTðtÞ (2)

where D ¼ diagfdð1Þ; dð2Þ; . . . ; dðNÞg is the degree matrix and L

the Laplacian matrix of the graph. This differential equation is

readily solvable in terms of the eigendecomposition of L, or in ma-

trix exponential form:

TðtÞ ¼ e�LktTð0Þ ¼
X

j

fvT
j � Tð0Þge�kjktvj (3)

where vj are the eigenvectors of L and kJ are the corresponding eigen-

values. If we consider that, in each run of the simulation, the protein

is initially cooled to a very low temperature (10K) and subsequently a

single residue is coupled to a room temperature heat reservoir for a

fixed time, then we may simplify the solution further by imposing

that the initial temperature vector have a single non-zero component,

Tð0Þ ¼ ½. . . ; 0; h; 0; . . .�T , where h is the initial temperature of the

heated residue. Letting h be the index of the heated residue, follows:

TðtÞ ¼ h
X

j

½vj�he�kjktvj (4)

where ½vj�h denotes the hth component of the jth eigenvector.

Moreover, the temperature of each particular residue must obey:

TiðtÞ ¼ h
X

j

½vj�he�kjkt½vj�i

Under Equation (3) (and therefore also Equation (4)), TðtÞ reduces

over time to a constant vector proportional to the v0 ¼ 1 eigenvector

associated to the smallest eigenvalue k0 ¼ 0 (which is always a solu-

tion because every row and column of L has zero sum), correspond-

ing to the situation where thermal equilibrium has been reached

between all residues—evolution under Equation (4) is akin to relax-

ation of a concentrated pulse. In order to compare with ATD data,

one might calculate the relative time to reach equilibrium as a func-

tion of which residue is initially heated, or, equivalently, the rate at

which energy leaves the residue where it is initially concentrated. If

residue h is initially heated, we may approximate, for kt� 1:

ThðtÞ ¼ h
X

j

e�kjkt½vj�2h ¼ h
X

j

ð1� kjkt þOððktÞ2ÞÞ½vj�2h

Discarding terms on the order of ðktÞ2 and higher:

ThðtÞ � h
X

j

½vj�2h � kt
X

j

kj½vj�2h

 !

Therefore:

ThðtÞ � hð1� LhhktÞ ¼ hð1� dðhÞktÞ

And the initial dissipation rate is dominated (to first order) by the

degree of the heated residue, and more connected residues will drive

the dynamics towards equilibrium faster; this observation is reminis-

cent of the result reported by Moreno and Pacheco (2004), where it

is shown that the average time for a scale-free network of coupled

oscillators to return to phase synchronization after a perturbation

is a function of the degree k of the perturbed node, with exponent

hsi � k�0:96 very close to –1, although the argument the authors pre-

sent is oriented towards network topologies where loops are infre-

quent. Nevertheless, a negative correlation is expected and observed

(data not shown) between ATD final temperature data as a function

of heated residue and time to equilibrium (as calculated by Equation

(4)) as a function of heated residue. However, evolution under

Equation (3) can be shown to preserve the average temperature,

ð1=NÞ
P

i TiðtÞ ¼ ð1=NÞ
P

i Tið0Þ; 8t, making it in fact unsuitable to

model an ATD experiment, where a residue is held coupled to a heat

Fig. 3. Correlations between centrality measures by residue index and final

protein temperature as a function of heated residue, for the 1F5J structure.

Subgraph centrality fails to reproduce the distribution for the subset of resi-

dues which, when heated, result in lower than average final temperatures
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reservoir for a fixed interval and the average temperature increases

monotonically. We can modify the model to account for this, by

including a term for the heat reservoir in the sum:

dTiðtÞ
dt

¼ kbBiiðh� TiÞ þ k
X

j

AijðTjðtÞ � TiðtÞÞ

where h is now the temperature of the heat bath and B is a diagonal

matrix such that Bii is 1 if residue i is coupled to the bath and zero

otherwise. Introducing the substitution Trel
i ¼ Ti � h, we can rewrite:

dTrel
i ðtÞ
dt

¼ �kbBiiT
rel
i þ k

X
j

AijðTrel
j ðtÞ � Trel

i ðtÞÞ

And, in column vector form:

dTrelðtÞ
dt

¼ �kbBTrelðtÞ � kLTrelðtÞ ¼ ð�kL� kbBÞTrelðtÞ

which is analogous to Equation (2) and solved by the same

technique:

TrelðtÞ ¼ eð�Lkt�BkbtÞTrelð0Þ ¼ e�MktTrelð0Þ

And thus:

TðtÞ ¼ e�MktTð0Þ þ ðI� e�MktÞh (5)

where h denotes the vector ½. . . ; h; h; h; . . .�T . Under Equation (5), the

average temperature increases monotonically and TðtÞ reduces to h

for large t, adequately modeling ATD behavior. The M matrix is a

perturbation of the Laplacian matrix which includes the influence of

the heat reservoir and depends on two free parameters; it is given by

Mkt ¼ Lkt þ Bkbt ¼ ðLþ krBÞs, where s ¼ kt is the characteristic

time for the coupling between residues and kr ¼ kb=k is the relative

intensity of the coupling to the heat bath compared to the coupling

between residues. Once again, we expect that heating residues which

occupy privileged positions in the network will increase the average

temperature faster than heating poorly connected ones; to investi-

gate, we approximate, to second order and for s� 1:

TðsÞ � Tð0Þ � ð�MsþM2 s2

2
ÞTð0Þ þ ðMs�M2 s2

2
Þh

which averages to:

1

N

X
DTðsÞ � s

N

X
Mh�

X
MTð0Þ

h i
þ s2

2N

X
M2Tð0Þ �

X
M2h

h i

For simplicity we calculate each term separately. If residue h is ini-

tially heated, the action of M on h amounts to the row sum of krB,

since every row and column of L has mathvariant="bold"zero sum,

and sums to krh. Similarly, the action of M on Tð0Þ is the h-th col-

umn of krB, and sums to krh as well. In order to calculate the terms

involving M2, we expand it into M2 ¼ ðL2 þ krLBþ krBLþ k2
r B2Þ.

The only terms that do not sum to zero are
P

B2

h¼ h;
P

B2Tð0Þ ¼ h and
P

BLTð0Þ ¼ dðhÞh. We introduce the re-

sults in the average above to obtain:

DTavgðsÞ �
s
N

krh� krh

�
þ s2

2N

�
krhdðhÞ þ k2

r h� k2
r h

��

which simplifies to:

DTavgðsÞ �
s2

2N
krhdðhÞ

Therefore, the average temperature rises at an initial rate propor-

tional (to second order) to the bath temperature, the intensity of the

coupling to the bath and the degree of the heated residue.

Expanding to higher orders reveals the influence of progressively

wider neighborhoods around the heated residue; at infinity,X
j

½e�Ms�hj is recovered as a complete characterization of the con-

nectivity of residue h. We tested the model’s predictions for the final

average temperature as a function of heated residue (as given by

Equation (5)) against ATD data; the parameter space for s and kr

was scanned independently for each protein in order to maximize

the observed correlations, but the obtained values all fell within a

very short range of each other. Results are presented in Table 2, and

representative plots are shown in Figure 4. The observed correlation

Table 2. Correlation between final ATD temperature as a function

of heated residue and the same data as calculated by equation (5)

and averaged

Protein

Model parameters 1F5J 1M4W 1XNB 2VUJ 2VUL 1YS1 2PRG

s 15.0 18.0 9.5 14.5 11.0 17.0 32.0

kr 103 103 103 103 103 103 103

Pearson’s r 0.772 0.774 0.751 0.775 0.749 0.793 0.627

Note: Also presented are the parameters that maximize the observed correl-

ation in each case; increasing kr further does not alter the correlation coeffi-

cients, suggesting that 103 is large enough to represent an infinitely strong

coupling to the heat reservoir relative to the coupling between residues.

(a) (b)

Fig. 4. (a) Correlation between ATD final temperature as a function of heated residue and the same data as calculated by equation (5) and averaged, for the

1M4W structure. Values are given as Z-Score, i.e. deviation from the mean expressed as number of standard deviations. (b) The same data in scatter plot form
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coefficients lie in the same range as those reported in Table 1, but

compare favorably to both closeness and eigenvector centrality.

5 Conclusion

Here we have shown that an amino acid residue’s ability to effi-

ciently transfer vibrational energy to its neighbors and to the rest of

the structure is predicted by its connectivity, which was made evi-

dent by the application of graph-theoretic tools on networks repre-

senting the contacts between residues in each protein. To construct

these networks, we revisited multiple ‘contact’ definitions encoun-

tered in the literature, and developed structural arguments to sup-

port a distance criterion of at most 6 Å between any pair of atoms

for a thermal coupling to exist. Comparison of the network models

with heat transfer data obtained via ATD molecular dynamics ex-

periments identified closeness centrality and the column sums of the

e�Ms matrix as the best descriptors of connectivity with regards to

thermal diffusion, which is well supported by their structural

interpretations.

It remains open to investigation whether a simple discrimination

between covalent and non-covalent contacts, associating a different

coupling constant to each type of interaction, can significantly im-

prove the correlation between connectivity and thermal diffusion;

many similarly simple refinements may be proposed. It may also be

of particular interest to identify those residues for which connectiv-

ity fails to predict strong (or weak) thermal coupling to the struc-

ture; measures such as betweenness centrality or subgraph centrality

tend to underperform when predicting weak couplings (see e.g.

Fig. 3). Preliminary analyses performed on a set of xylanases con-

sidered in this work (data not shown) indicate that there exists a

patch of significantly well connected residues along the catalytic

cleft which nevertheless exhibit weak thermal coupling to the rest of

the protein. This observation, if confirmed, may be related to the

maintenance of adequate shape or mobility of the catalytic cleft in

the face of perturbations, and would be reminiscent of the results re-

ported in (Bleicher et al., 2011). The connection with heat diffusion

established by this work may, then, help shed light on the observa-

tions that associate residues of outstanding centrality with folding

nuclei and functional sites.
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